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Based on momentum- and position-space analyses of the moment operators 
for two-electron atoms, it is shown that there exists a family of two-electron 
wave functions which satisfy a proportionality relation, 

(r~)/(r[2) = (P[ ) / (P[2 )  = 2 ~/2, 

between the one- and two-electron moments in position and momentum 
spaces, where v is an arbitrary number for which the moments are well-defined. 
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I. Introduction 

The position and momentum representations are alternative ways to investigate 
the electronic structure of atoms and molecules. However, the momentum-space 
treatment has received little attention, partly because the potential energy operator 
is usually given in terms of positions and partly because the solution of integral 
SchrSdinger equations in momentum space is not well-established. Nevertheless, 
there are continuous efforts to solve directly the momentum-space Schr6dinger 
equation (see [1, 2] and references therein). They have brought definite develop- 
ments to the electronic structure theory of atoms and molecules and also to the 
theory of  Compton profile [3,4], in which the momentum wave function 
constitutes a natural basis of  discussion. 

Previously, we have successfully applied the momentum-space method to the van 
der Waals interaction among ground-state hydrogen atoms, and several two- and 
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three-body interaction constants have been determined almost exactly together 
with the first order perturbation wave function of the system (see [5] and references 
therein). The momentum-space technique has also been applied to the one- 
electron multi-center Coulomb problem and the accuracy comparable to the 
position-space method has been numerically verified for the hydrogen molecular 
ion (see [6] and references therein). The Fock expansion [7, 8] of the kernel of 
the integral Schr6dinger equation has been fully utilized (see [9, 10] for review). 
These studies have given a clue to derive various sum rules and interrelations 
among different types of integrals over hydrogenic orbitals [11, 12]. However, 
the above applications have been essentially limited to problems of one-electron 
nature. 

In the present paper, we point out an interesting aspect of the one- and two- 
electron operators rl,  ,g12, Pl, Pl2, and their expectation values, which has been 
found in the momentum-space study of the two-electron atomic Schr6dinger 
equation: If  the wave function for the state under consideration can be described 
by a single product of a symmetric spatial function and an antisymmetric spin 
function, there exists a family of spatial functions which satisfy certain proportion- 
ality relations between the one- and two-electron moments (r~') and (r~'2) in 
position space and (p~') and (P~'R) in momentum space, where v is any number 
for which these moments are defined. For a special case of v = - 1 ,  we have a 
relation (1/r~2). = (1/r~ )/~/-2. When these functions are employed as trial functions, 
we can then perform the variational procedure without evaluating the electron 
repulsion integral. In the next section, we clarify the existence of this special 
class of spatial functions and discuss their properties. In Sect. 3, numerical 
illustrations are given. Atomic units are used throughout this paper. 

2. Special family of  two-electron atomic wave functions 

2.1. Momentum-space consideration and functions qb(pl, P2)=f(P~ +p22) 

For a two-electron atom, we consider a case where an approximate total wave 
function is expressible by a single product of spatial and spin functions. We 
denote the normalized spatial function as 4~(Pl, P2) in momentum space. 

The roles of the one- and two-electron operators r~' and r]'2 are represented in 
momentum space by the functions 

F~(pl, P2) = j V~(p~ -p~,  p2"--p;)~b(p~, p;) d p~ d p;, (la) 

G~(p,,p2) = J W~(p,-p~,e2-e;)~b(p~,p~) d p~ d p;, (lb) 

where 

Vv(-Pa' Ca) -= (2~r)-6 1 r~" exp ( - i [ e l  �9 ra+p2" r2]) dra ds (2a) 

W~(pa, P2) -= (2~') -6 f r~'2 exp (-i[p~ �9 ri +P2" r2]) dra ds (2b) 
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The functions F~ and G~ correspond, respectively, to r~O(rl, r2) and rl~qJ(rl, r2) 
in position space, where qr(rl,r2) is the Fourier transform of ~b(el,p2). The 
multiplicativity of the operators r~' and r~'2 is lost in momentum space. The 
expression for V~ is easily rearranged as 

e2)  = (3a) 
where 

Iv(e) - (2~r)-3 I r~ exp ( - i  e �9 r )  dr 

= (2~r2) -1 r~+2jo(pr ) dr (3b) 

with j ,  (x) being the spherical Bessel function of the first kind, and 

~(e) = (2~r)-3 I exp ( - ~ .  r) dr (3c) 

is the three-dimensional Dirac delta function. Then the one-electron contribution 
F~ is reduced to 

F~(e"e9 = I I"(8'-e)6(e'e2) ~. (4) 

To obtain an expression for G, which compares with Eq. (4), we introduce the 
orthogonal transformations of the variables (p~, P2) and (rl, r2): 

.q -= ( e , -  pg/v2,  9 --- (e, + p g / ~ ,  
-= ( r , -  rg /vS,  S---- (r, + r9/42,  

~ 2  2--  2 q2+~  =Pa*P2, dqdO=dpl d p2, (5a) 
$2..~ S 2 =  2 2 r, + r2, ~ a s  = ~, ~ .  

So long as the original pairs (rl, Pl) and (r2, P2) are conjugate, the transformed 
pairs (~, q) and (s-, Q) are also conjugate and the relation, 

e l "  r l "~-p2"  ,,,r2 = q " S"~ 9 " s-, ( 5 b )  

holds. Then we can rewrite Eq. (2b) as 

W~(p1, P2) = (2Ir) -6 f (x/2 s) ~ exp ( - i [q .  s + Q. ,S]) d s ds- 

= 2"/2I ,(q)6(Q.) .  (6) 

We also introduce a momentum wave function ~b'(q, .Q) defined by 

6'(.q, 9)-= ~ ( [ 9 + .  q]/J~, [ 9 - .  q]/v2) = 6 (e , ,  .p2)- (7) 
we thus have an expression 

~  = 2 " 2 J  f , ( .q-e)6 ' (e ,  9)  ~ ,  (8) 

which is analogous to Eq. (4) apart from the constant prefactor. 



420 T. Koga 

Comparison of  Eqs. (4) and (8) shows that if the equality 4b = 4b' holds, the 
function G~ resulting from the two-electron operator reduces to the form of the 
function F~ resulting from the one-electron operator. To see such a possibility, 
we return to the relation of the two sets of variables (Pl,  P2) and (q, Q). Since 
the definition (5) expresses a rotation of coordinate axes, w e  immediately find 
that if the spatial function ~b(pl, P2) takes a form 

~b(pl,p2) 2 2 
. ~ = f ( P ~ + P 2 ) ,  (9a) 

then the modified function ~b'(q, Q) has exactly the same form 

@'(.q, 9 )  = f ( q 2 +  Q2), (9b) 

where f(x) is an arbitrary well-behaved function which satisfies proper boundary 
conditions in momentum space. For this type of spatial functions, we obtain 
from Eqs. (4) and (8) the following interesting relation 

G~(p~, P2) = 2"/2F,,(q, 9 )  

= 2"/2F~([P, -P2]/~/2, [p, +p2]/v/2). (10) 

For a particular case of  v = - 1 ,  which has motivated the present study, the 
contributions of the nuclear attraction operator 1/rl and the electron repulsion 
operator 1/r12 are embodied, after the angular integrations, by the function 

fo o F_,(pl, P2) = (1rPl) -~ Qo([p2+p~]/2ppOpf(p2+p~) dp, (11) 

where Q,(x) is the Legendre function of the second kind. 

Now using Eqs. (4) and (8), we obtain the momentum-space representations of 
(r~') and (r~2) as 

(rr2):2~/2 I ~b',(q, Q ) [ f  I,,(q-p)dJ'(p,Q)dp]dqdQ, (12b) 

which finally lead to the desired result 

(rT) = 2-"/2(r~2), (13a) 

for the spatial wave functions ~b(pl, P2) =f(P~+P~). Since the moment operators 
p~' and p1~2 are multiplicative in momentum space, it immediately follows that 
this family of  functions also satisfies 

(p~') = 2-"/2(p~'2), (13b) 

and hence 

( r ; ) / ( r [ 2 )  = (P~) / (P[2 )  = 2-~/2. (13c) 

Namely, a proportionality relation always holds between the one- and two- 
electron moments in both position and momentum spaces with the same propor- 
tionality constant. 



Two-electron atomic wave functions 421 

2.2. Position-space consideration and functions O(rl, r2) = g(r 2 + r~) 

Discussion in position space proceeds in an exactly analogous way to the 
momentum-space discussion given in the preceding subsection. 

v = 2~/2s ~ Based on the orthogonal transformations [Eq. (5a)], we use the relation r12 
and introduce a modified position wave function 

O'(s, S)---- ~([S +s]/~/-2, [S-s ] /~ /2)  = ~,(r,, r2). (14) 

We then find that Eq. (13) again holds for another family of wave functions 
0(r l ,  r2) = g(r 2 + r~), where g(x) is an arbitrary well-behaved function satisfying 
appropriate boundary conditions in position space. 

For v - - - 1 ,  Eq. (13) yields a relation 

(1/rl) = x/2(1/r12), (15) 

between the nuclear attraction and electron repulsion integrals. When a function 
from the families 4~(Pl, P:) =f(p~+p2) and 0 ( r l ,  r2) = g(r~+ r~) is used as a trial 
function in the variational calculation, we can avoid the evaluation of the electron 
repulsion integral, which is the most tedious part of the calculation. Note that 
the functions f (  p 2 + p2) and g ( r 2 + r 2) are symmetric with respect to the exchange 
of the electron labels and therefore the accompanied spin function must be 
antisymmetric to obtain an acceptable wave function. 

2.3. Equivalence of two families of functions 

Apparently, there seem to exist two families of functions dp(pl,p2)=f(p2+p~) 
and ~ ( r l , r 2 ) = g ( r 2 + r  2) which always fulfill the proportionality relation, Eq. 
(13). However, this is not true. It can be proved that the two families are a pair 
of Fourier transforms and they constitute a single family. 

Let us consider the Fourier transform g ( r l ,  re )  of a function f(p2+p~): 

g(rl ,  r2) = (2qr)  -3 f f(p2+p22) exp (+i[p 1 �9 r~ +P2" r2]) d pl de z. (16a) 

Using the expansion [13] 
co 1 

e x p ( / p . r ) = 4 ~ r  E ~ i~h(pr)Yl,,*(f~v)Yl,,(fL) (17) 
/ = 0  m = - - l  

and integrating over the angular variables, we find 

g(rl ,  r2) = (2/~r) [ f f  ~ 2 2 .  �9 2 2  f(p~ +P2)jo(p~rl)jo(p2r2)plp2 dpl alp2. (16b) 

Introducing the polar coordinates for the two-dimensional quadrant space defined 
by the moduli p~ and P2, we can rewrite Eq. (16b) as 

g(rl ,  r2) = (2/Ir)(.r,r;) -1 p3f(p2) 

[I; ] x sin(prlcosO) sin(pr2sinO)sinOcosOdO dp, (16c) 
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where p = ( p~ + p~)1/2 and 0 = arctan (p2/pl).  The angular integration in Eq. (16c) 
can be carried out using the differentiated form of the formula (3.711) of  [14], 
and we finally obtain 

L o g(f l ,  f2) = r -2 p3f(p2)J2(pr) dp, (16d) 

where J,(x) is the Bessel function of  the first kind and r = (r~+ r~) 1/2. Equation 
(16d) implies that the Fourier transform of f(p~+p~) is a function of  r =  
(r~+r~) 1/2. Conversely, the Fourier transform of g(r~+r~) is shown to be a 
function of  p = (p~+p~)l/2. In this sense, the functions f(p~+p~) and g(r~+ r~) 
constitute a single family. 

3. Numerical illustrations 

In order to see the property of  the functions q~(Pl, P2) =f(P~+p~) and ~(%1, %2) = 
g(r~+ r~) as approximations to the two-electron a~omic wave function, we have 
examined the moment  ratio (r';)/[2-"/2(r'~2)] ( - 2 -  n ---4). For the ground states 
of  several helium-like atoms, nearly exact values of  these moments have been 
reported [i5].  The results are summarized in Table 1. Except for a few cases, the 
ratios are found to be around unity as Eq. (13) implies, and the deviation from 
unity decreases as the nuclear charge increases. For 1-< n---3, the deviation is 
small (within 10%) except for H - ,  while for n = - 2  it is large in all cases. For 
n = - 1 ,  the deviation is about  20%, and this means that the energy expectation 
value obtained from the functions f(p~+p~) and g(r~+r~) will not be good. 
These features suggest that the functions f(p~+p~) and g(r21+ r~) are relatively 
reasonable for the description of intermediate region, but do not suit for accurate 
description of  the near-nucleus region in position space and the high-momentum 
region in momentum space. 

As a simple example of  the variational application, we have studied a class of  
two-electron functions with two parameters,  

g~(r)=N~r~K~(ar), (a , /x  > 0 )  

r = (r~+ r~) '/2, (18a) 

Table 1. Proportionality between (r~') and (r~'2) for the ground states of the helium-like atoms from 
H-  through N 5+. The values for the moments are taken from [15] 

Atom n - - n / 2  n <r,>l[2 <~,~>3 

n = - 2  -1  1 2 3 4 

H -  3.5996 1.5534 0.8686 0.9455 1.1906 1.6229 
He 2.0540 1.2622 0.9243 0.9485 1.0486 1.2244 
Li + 1.8284 1.2124 0.9394 0.9628 1.0501 1.1996 
Be 2+ 1.7336 1.1902 0.9469 0.9711 1.0544 1.1945 
B 3+ 1.6815 1.1776 0.9514 0.9764 1.0578 1.1934 
C a+ 1.6484 1.1695 0.9544 0.9801 1.0605 1.1933 
N 5+ 1.6255 1.1638 0.9566 0.9828 1.0626 1.1935 
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where K ,  (x) is the modified Bessel funct ion and N~ is the normalizat ion constant,  

N ~  = O/2g+6F(2/z -4- 6)/{~322g+4F(2/~ + 3) [F(~  + 3)]2}, (18b) 

in which F(x)  is the gamma  function. The Fourier  t ransformat ion o f  Eq. (18a) 
yields the corresponding m o m e n t u m  wave function,  

f~ (p )  = N~ [22+~F(/x + 3)O/~](p2 + a2) 3+~, 

P = (p2+p2)1/2. (19) 

For  a helium-like a tom with nuclear charge Z, the variation with respect to the 
parameters  u and O/ has given the op t imum values, 

~opt = 1/2, O/op t = ( 3 2 / 1 5 r  l /v/2),  

and 

gl/2(r) = (80/6/15'n'3) 1/2 exp (-o/r), 

f,/2(P) = ( 2 v / ~  O/7/2/qT")(P 2"~- O/2)7/2. 

= -o/opt/2, (20a) Eopt 2 

(2Oh) 

(20c) 

For Z = 2 (helium atom), Eop t is obtained to be -2.500017,  which is 87.4% of  
the Har t r ee -Fock  limit value [16, 17] and 86.1% of  the nearly exact value [15, 18]. 
The energy expectat ion value is poor  as expected. The associated posit ion 
moments  (r~) and (r~'2) are given in Table 2 and compared  with the nearly exact 
values [15]. The momen t  (rl) is satisfactory and the moment  (r12) may be within 
an acceptable range of  deviation. For  the other  moments ,  the error is large again. 

These numerical  experiences suggest that  the functions ~b(pl, P2) =f(p~+p2) and 
q, (r l ,  rE) = g ( r  2 + r~) are not  useful for the accurate desc r ip f lonof the  two-electron 
electronic state, so long as we stand on the variational criterion. Rather,  the 
theoretical structure o f  the one- and two-electron moments  clarified in this study 
should be stressed. The existence of  this special family o f  two-electron wave 
funct ion may be helpful to unders tand the proper ty  o f  the one- and two-electron 
operators.  The present results can be also used for semi-quantitative or  pedagogi-  
cal discussion and for the construct ion o f  simple models  o f  the electron correlation 

Table 2. Comparison of the position moments for He obtained from Eq. (20) with the nearly exact 
values reported in [15] 

n (r~) (r~2) 

Eq. (20) Exact Error s Eq. (20) Exact Error a 

-2 4.0000 6.0174 -33.5 2.0000 1.4648 36.5 
-1 1.5184 1.6883 -10.1 1.0737 0.9458 13.5 

1 0.9111 0.9295 -2.0 1.2884 1.4221 -9.4 
2 1.0500 1.1635 -12.0 2.1000 2.5164 -16.5 
3 1.4577 1.9679 -25.9 4.1229 5.3080 -22.3 
4 2.3625 3.9735 -40.5 9.4499 12.9812 -27.2 

a Relative errors in % 
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p r o b l e m .  F i n a l l y  we  n o t e  tha t  t he  g e n e r a l i z a t i o n  o f  the  p r e s e n t  s t udy  to m a n y -  

e l e c t r o n  a t o m s  is poss ib l e .  H o w e v e r ,  the  r e s u l t a n t  spa t i a l  f u n c t i o n  is s y m m e t r i c ,  

a n d  the  di f f icul ty  wil l  be  t h a t  t he  a c c o m p a n i e d  sp in  f u n c t i o n  m u s t  be  an t i sym-  

m e t r i c  fo r  al l  p e r m u t a t i o n s  to o b t a i n  an  a c c e p t a b l e  a p p r o x i m a t i o n  to  t he  to ta l  
e l e c t r o n i c  w a v e  f u n c t i o n .  
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